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Swimming: motivations, definition, and history

Motivations and definition

We are interested in the mathematical study of the motion of a

micro-swimmer in a viscous fluid.

We give the following definition of swimming:

Definition

Swimming is the ability of an organism to perform a variation of

its spatial position caused by the variation of its shape, under the

self-propulsion constraint.
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Swimming: motivations, definition, and history

Motivations and definition

We are interested in the mathematical study of the motion of a

micro-swimmer in a viscous fluid.

We give the following definition of swimming:

Definition

Swimming is the ability of an organism to perform a variation of

its spatial position caused by the variation of its shape, under the

self-propulsion constraint.

Definition

Self-propulsion means no external forces or momenta.
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Swimming: motivations, definition, and history

A brief (biased) history

Taylor, Lighthill ’50s, Purcell ’70s, and Childress ’80s.
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Swimming: motivations, definition, and history

A brief (biased) history

Taylor, Lighthill ’50s, Purcell ’70s, and Childress ’80s.

Shapere-Wilczek (1989) geometric study for the problem of

swimming, using gauge theory techniques and expansion in

spherical harmonics.

Golestanian-Najafi (2004) and Avron-Kenneth-Oaknin (2005)

presented minimal model swimmers, the Three Linked

Spheres and the PushMePullYou.

Alouges-DeSimone-Lefebvre (2008 and 2009): controllability

and optimal control of these minimal axisymmetric swimmers

with a finite number of shape parameters.

In our model, we build on these results to construct a framework

with no constraints on the number of shape parameters and

symmetry.
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Swimming: motivations, definition, and history

Movie time

[movie by Luca Heltai (SISSA)]
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Mathematics of swimming The mathematical model

The model I: Stokes flow

Viscous flows are characterized by low Reynolds number. In this

limit, the Navier-Stokes equations of Fluid Dynamics reduce to

the Stokes equations
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The model I: Stokes flow

Viscous flows are characterized by low Reynolds number. In this

limit, the Navier-Stokes equations of Fluid Dynamics reduce to

the Stokes equations







∆u =∇p in Ω ,

divu = 0 in Ω ,

u = U on ∂Ω ,

u = 0 at ∞ if Ω is unbounded.
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Mathematics of swimming The mathematical model

The model I: Stokes flow

Viscous flows are characterized by low Reynolds number. In this

limit, the Navier-Stokes equations of Fluid Dynamics reduce to

the Stokes equations







∆u =∇p in Ω ,

divu = 0 in Ω ,

u = U on ∂Ω ,

u = 0 at ∞ if Ω is unbounded.

Two major properties:

linearity, of the dependance of the solution on the

boundary data (good);

time reversibility, see the Scallop theorem; need of sym-

metry breaking to swim (can be dramatically bad).
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Mathematics of swimming The mathematical model

The model II: the swimmer
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reference 

configuration

current 

configuration

rigid motion

ϕt = rt
︸︷︷︸

unknowns

◦ st
︸︷︷︸

data

Data are infinite dimensional, while the unknowns are finite

dimensional.
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Mathematics of swimming The mathematical model

Main existence, uniqueness, and regularity result

Theorem

For every sufficiently smooth shape change t 7→ st , the position

functions t 7→ rt are uniquely determined by the initial conditions

at t = 0. More precisely, there exists a unique family of rigid

motions t 7→ rt such that the state functions t 7→ ϕt := rt ◦ st satisfy

the equations of motion, and ϕt (or equivalently rt) takes a

prescribed value at t = 0.
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Mathematics of swimming The mathematical model

Main existence, uniqueness, and regularity result

Theorem

For every sufficiently smooth shape change t 7→ st , the position

functions t 7→ rt are uniquely determined by the initial conditions

at t = 0. More precisely, there exists a unique family of rigid

motions t 7→ rt such that the state functions t 7→ ϕt := rt ◦ st satisfy

the equations of motion, and ϕt (or equivalently rt) takes a

prescribed value at t = 0.

The equations of motion are derived from Newton’s second law

Ft = mat, where Ft = Fext
t + Fvisc

t . Due to the self-propulsion

constraint, Fext
t = 0, and we can consider mat = 0 because of

the viscous approximation. The equations of motion then read

Fvisc
t =

∫

∂At

σtnt ds(y) = 0, Mvisc
t =

∫

∂At

y×σtnt ds(y) = 0.
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Mathematics of swimming The equations of motion

Way to solve the equations
How to write the equations in terms of st and solve them?
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Mathematics of swimming The equations of motion

Way to solve the equations
How to write the equations in terms of st and solve them?

Write Stokes equations in the reference frame of the swimmer

Bt := st(A). The new boundary velocity is

Vt(z) = R⊤
t ẏt + R⊤

t ωt × z+ R⊤
t ṡt ◦ s

−1
t

= V
rigid
t [ẏt , ωt] + V

shape
t [ṡt ◦ s

−1
t ],

ωt being the axial vector of ṘtR
⊤
t .
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Way to solve the equations
How to write the equations in terms of st and solve them?

Write Stokes equations in the reference frame of the swimmer

Bt := st(A). The new boundary velocity is

Vt(z) = R⊤
t ẏt + R⊤

t ωt × z+ R⊤
t ṡt ◦ s

−1
t

= V
rigid
t [ẏt , ωt] + V

shape
t [ṡt ◦ s

−1
t ],

ωt being the axial vector of ṘtR
⊤
t . Then,

[

Fvisc
t

Mvisc
t

]

= −

[

Kt C⊤
t

Ct Jt

][

R⊤
t 0

0 R⊤
t

][

ẏt

ωt

]

+

[

F
shape
t

M
shape
t

]

,

F
shape
t and M

shape
t being the viscous drag force and torque of a

Stokes fluid with boundary velocity ṡt ◦ s
−1
t .

[· · · ] is referred to as the grand resistance matrix.
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Mathematics of swimming The equations of motion

The equations of motion

A simple manipulation yields

[

ẏt

ωt

]

=

[

Rt 0

0 Rt

][

Ht D⊤
t

Dt Lt

][

F
shape
t

M
shape
t

]
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[

ẏt

ωt

]

=

[
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0 Rt

][

Ht D⊤
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RtΩt(st , ṡt)
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The equations of motion

A simple manipulation yields

[

ẏt

ωt

]

=

[

Rt 0

0 Rt

][

Ht D⊤
t

Dt Lt

][

F
shape
t

M
shape
t

]

=

[

Rt bt(st , ṡt)

RtΩt(st , ṡt)

]

.

We make the dependance on the data explicit

ẏt = Rt

(
Ht F

shape
t +D⊤

t M
shape
t

)
,

Ṙt = RtA
(
Dt F

shape
t + LtM

shape
t

)
.
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Mathematics of swimming The equations of motion

The equations of motion

A simple manipulation yields

[

ẏt

ωt

]

=

[

Rt 0

0 Rt

][

Ht D⊤
t

Dt Lt

][

F
shape
t

M
shape
t

]

=

[

Rt bt(st , ṡt)

RtΩt(st , ṡt)

]

.

We make the dependance on the data explicit

ẏt = Rt

(
Ht(st)F

shape
t (st ) +D⊤

t (st)M
shape
t (st )

)
,

Ṙt = RtA
(
Dt(st)F

shape
t (st ) + Lt(st)M

shape
t (st )

)
.
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.

We make the dependance on the data explicit

ẏt = Rt

(
Ht(st)F

shape
t (st , ṡt ◦ s

−1
t ) +D⊤

t (st)M
shape
t (st , ṡt ◦ s

−1
t )

)
,

Ṙt = RtA
(
Dt(st)F

shape
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shape
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The equations of motion

A simple manipulation yields

[

ẏt

ωt

]

=

[

Rt 0

0 Rt

][

Ht D⊤
t

Dt Lt

][

F
shape
t

M
shape
t

]

=

[

Rt bt(st , ṡt)

RtΩt(st , ṡt)

]

.

We make the dependance on the data explicit

ẏt = Rt

(
Ht(st)F

shape
t (st , ṡt ◦ s

−1
t ) +D⊤

t (st)M
shape
t (st , ṡt ◦ s

−1
t )

)
,

Ṙt = RtA
(
Dt(st)F

shape
t (st , ṡt ◦ s

−1
t ) + Lt(st)M

shape
t (st , ṡt ◦ s

−1
t )

)
.

Now, use classical results from ODE theory to get existence,

uniqueness, and regularity of the solutions yt and Rt.

What do we need more? Regularity for the coefficients

bt(st , ṡt) and Ωt(st , ṡt).
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Regularity Detection of the problem

Where the difficulty really is

The regularity issue encompasses an easy and a difficult part.
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The regularity issue encompasses an easy and a difficult part.

(1) All the sub-matrices of the grand resistance matrix, and

therefore its inverse, are continuous with respect to time.

They are functions only of the geometric shape st.

(2) All the difficulty sits in studying how F
shape
t and M

shape
t vary

with respect to time. The hard thing to cope with is that they

depend both on st and on ṡt ◦ s
−1
t .
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Regularity Detection of the problem

Where the difficulty really is

The regularity issue encompasses an easy and a difficult part.

(1) All the sub-matrices of the grand resistance matrix, and

therefore its inverse, are continuous with respect to time.

They are functions only of the geometric shape st.

(2) All the difficulty sits in studying how F
shape
t and M

shape
t vary

with respect to time. The hard thing to cope with is that they

depend both on st and on ṡt ◦ s
−1
t .

Both cases are solved via a variational technique, which in case

(2) is not straightforward.
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Regularity Solution of the problem

How we solve the problem

The dependence of F
shape
t and M

shape
t on st and on ṡt ◦ s

−1
t

simultaneously makes it hard to compare the external Stokes

flows at different instants of time: there are difficulties in building

a solenoidal velocity field that fits for these two different times.
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−1
t

simultaneously makes it hard to compare the external Stokes

flows at different instants of time: there are difficulties in building
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We drop the request of continuity and prove that F
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t and

M
shape
t depend in a measurable fashion on time t. This is enough

to have existence and uniqueness to the equations of motion.
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Regularity Solution of the problem

How we solve the problem

The dependence of F
shape
t and M

shape
t on st and on ṡt ◦ s

−1
t

simultaneously makes it hard to compare the external Stokes

flows at different instants of time: there are difficulties in building

a solenoidal velocity field that fits for these two different times.

We drop the request of continuity and prove that F
shape
t and

M
shape
t depend in a measurable fashion on time t. This is enough

to have existence and uniqueness to the equations of motion.

Could we ask for more regularity? Of course, we could; but

cases when ṡt is not even continuous are interesting in the

optimal controllability problems.
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Summary

What we have done so far. . .

We studied self-propelled motion in a viscous fluid.
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We studied self-propelled motion in a viscous fluid.

Natural mathematical framework: factorize the deformation

function by the Polar Decomposition Theorem. This allows to

separate the infinite dimensional contribution of the shape

change function st (data) from the finite dimensional rigid

motion rt (unknowns).
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Summary

What we have done so far. . .

We studied self-propelled motion in a viscous fluid.

Natural mathematical framework: factorize the deformation

function by the Polar Decomposition Theorem. This allows to

separate the infinite dimensional contribution of the shape

change function st (data) from the finite dimensional rigid

motion rt (unknowns).

Equations of motion: change of position and orientation in

space achieved by change of shape, by exploiting the

viscous resistance of the fluid.

Solution of the resulting linear system of ODEs under minimal

regularity assumptions on the data.

We proved that the motion of a micro-swimmer is

uniquely determined by the history of its shapes.
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Mono-dimensional swimmer

Approximate theories for 1-d swimmers

We focus now on a mono-dimensional swimmer χ(s, t) ∈ R
2,

(s, t) ∈ [0,L]×[0,T], performing a planar motion in a

three-dimensional infinite viscous fluid. Approximate theories

have been proposed to avoid the dimensional gap when

stating the boundary conditions.
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Mono-dimensional swimmer

Approximate theories for 1-d swimmers

We focus now on a mono-dimensional swimmer χ(s, t) ∈ R
2,

(s, t) ∈ [0,L]×[0,T], performing a planar motion in a

three-dimensional infinite viscous fluid. Approximate theories

have been proposed to avoid the dimensional gap when

stating the boundary conditions. We adopt the so called

resistive force theory or local drag theory, according to which

f (s, t) = C‖χ̇‖(s, t)χ
′(s, t) + C⊥χ̇⊥(s, t)Jχ

′(s, t),

m(s, t) = χ(s, t)×[C‖χ̇‖(s, t)χ
′(s, t) + C⊥χ̇⊥(s, t)Jχ

′(s, t)].
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three-dimensional infinite viscous fluid. Approximate theories

have been proposed to avoid the dimensional gap when

stating the boundary conditions. We adopt the so called

resistive force theory or local drag theory, according to which

f (s, t) = C‖χ̇‖(s, t)χ
′(s, t) + C⊥χ̇⊥(s, t)Jχ

′(s, t),

m(s, t) = χ(s, t)×[C‖χ̇‖(s, t)χ
′(s, t) + C⊥χ̇⊥(s, t)Jχ

′(s, t)].

The global drag force and momentum are given by

F(t) =

∫ L

0

Kχ(s, t)χ̇(s, t)ds, M(t) =

∫ L

0

χ(s, t)×Kχ(s, t)χ̇(s, t)ds
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Mono-dimensional swimmer Optimal swimming strategy

Existence of an optimal swimming strategy

It is interesting to address the problem of finding the best way to

move from an initial state χ0(·) at time t = 0 to a final state χT(·)

at time t = T.
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Mono-dimensional swimmer Optimal swimming strategy

Existence of an optimal swimming strategy

It is interesting to address the problem of finding the best way to

move from an initial state χ0(·) at time t = 0 to a final state χT(·)

at time t = T. Define the power expended during a stroke by

P(χ) :=

∫ L

0

∫ T

0

〈f (s, t), χ̇(s, t)〉dsdt =

∫ L

0

∫ T

0

〈Kχ(s, t)χ̇(s, t), χ̇(s, t)〉dsdt.

We prove the following result
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Mono-dimensional swimmer Optimal swimming strategy

Existence of an optimal swimming strategy

It is interesting to address the problem of finding the best way to

move from an initial state χ0(·) at time t = 0 to a final state χT(·)

at time t = T. Define the power expended during a stroke by

P(χ) :=

∫ L

0

∫ T

0

〈f (s, t), χ̇(s, t)〉dsdt =

∫ L

0

∫ T

0

〈Kχ(s, t)χ̇(s, t), χ̇(s, t)〉dsdt.

We prove the following result

Theorem

The minimum problem

min{P(χ) :χ ∈ Ξ, χ(·,0)=χ0(·), χ(·,T)=χT(·), (SP),. . . },

where χ0 and χT are assigned states, has a solution.
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Mono-dimensional swimmer Controllability

How to control the system
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Mono-dimensional swimmer Controllability

How to control the system

The maps H0 and HT exist by virtue of the equations of motion.
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Mono-dimensional swimmer Controllability

How to control the system

The maps H0 and HT exist by virtue of the equations of motion.

We build a way to make a straight rod translate along its

centerline and rotate around its center.
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Mono-dimensional swimmer Controllability

Translation
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Mono-dimensional swimmer Controllability

Rotation
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Thank you very much for your attention!
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