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Swimming: motivations, definition, and history

Motivations and definition

We are interested in the mathematical study of the motion of a
micro-swimmer in a viscous fluid.

We give the following definition of swimming:
Definition
Swimming is the ability of an organism to perform a variation of

its spatial position caused by the variation of its shape, under the
constraint.
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Swimming: motivations, definition, and history

Motivations and definition

We are interested in the mathematical study of the motion of a
micro-swimmer in a viscous fluid.
We give the following definition of swimming:

Definition
Swimming is the ability of an organism to perform a variation of

its spatial position caused by the variation of its shape, under the
constraint.

Definition

means no external forces or momenta.

Marco Morandotti (CMU) Self-propulsion in viscous fluids Pittsburgh, 15 October 2011 4/25



Swimming: motivations, definition, and history

A brief (biased) history

@ Taylor, Lighthill “80s, Purcell “70s, and Childress “80s.

University
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Swimming: motivations, definition, and history

Movie time

(movie by Luca Heltai (SISSA))
Self-propulsion in viscous fluids Pittsburgh, 15 October 2011 6/25


http://people.sissa.it/~heltai

Mathematics of swimming

9 Mathematics of swimming
@ The mathematical model
@ The equations of motion

University
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The model |: Stokes flow
Viscous flows are characterized by low . In this

limit, the Navier-Stokes equations of Fluid Dynamics reduce to
the
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The model |: Stokes flow
Viscous flows are characterized by low . In this

limit, the Navier-Stokes equations of Fluid Dynamics reduce to
the

Au=Vp in Q,

dive =0 in Q,
u=U on 09,
u=0aftco if ) is unbounded.
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The model |: Stokes flow
Viscous flows are characterized by low . In this

limit, the Navier-Stokes equations of Fluid Dynamics reduce to
the

Au=Vp in Q,

dive =0 in Q,
u=U on 09,
u=0aftco if ) is unbounded.

Two major properties:

o , of the dependance of the solution on the
boundary data (good):;
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The model |: Stokes flow
Viscous flows are characterized by low . In this

limit, the Navier-Stokes equations of Fluid Dynamics reduce to
the

Au=Vp in Q,

dive =0 in Q,
u=U on 09,
u=0aftco if ) is unbounded.

Two major properties:

o , of the dependance of the solution on the
boundary data (good):;

o , see the Scallop theorem; need of sym-
metry breaking to swim (can be dramatically bad).

Marco Morandotti (CMU) Self-propulsion in viscous fluids Pittsburgh, 15 October 2011 8/25




The mathematical model
The model Il: The swimmer

/\ current
y configuration
reference A,

configuration
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The mathematical model
The model Il: The swimmer

-

current
A configuration
reference Al
configuration

s
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The mathematical model
The model Il: The swimmer

@  motion

-

current
A configuration
reference A,
configuration
\» r/(’z) - yr+R¢Z
t . . .
shape change rigid motion
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t
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The mathematical model
The model Il: The swimmer

@  motion

-

current
A configuration
reference A,
configuration
3 JZ) = yr+RrZ
t . .
shape change rigid motion

= re o S
unknowns  data

Data are infinite dimensional, while the unknowns are finite
dimensional. Vevomsity
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Mathematics of swimming The mathematical model

Main existence, uniqueness, and regularity result
Theorem

For every sufficiently smooth shape change t — s; , the position
functions t — r; are uniquely determined by the initial conditions
att = 0. More precisely, there exists a unique family of rigid
motions t — r; such that the state functions := r; o 8; satisfy

the equations of motion, and -, (or equivalently r;) takes a
prescribed value att = 0.
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The mefhematicollmedsi
Main existence, uniqueness, and regularity result

Theorem

For every sufficiently smooth shape change t — s; , the position
functions t — r; are uniquely determined by the initial conditions
att = 0. More precisely, there exists a unique family of rigid
motions t — r; such that the state functions := r; o 8; satisfy
the equations of motion, and -, (or equivalently r;) takes a
prescribed value att = 0.

The equations of motion are derived from Newton’s second law
F; = ma;, where F; = F*t 4 Fyisc,

Carnegie
Mellucl;’
University

Marco Morandotti (CMU) Self-propulsion in viscous fluids Pittsburgh, 15 October 2011 10/25



The mefhematicollmedsi
Main existence, uniqueness, and regularity result

Theorem

For every sufficiently smooth shape change t — s; , the position
functions t — r; are uniquely determined by the initial conditions
att = 0. More precisely, there exists a unique family of rigid
motions t — r; such that the state functions := r; o 8; satisfy
the equations of motion, and -, (or equivalently r;) takes a
prescribed value att = 0.

The equations of motion are derived from Newton’s second law
F; = ma;, where F; = F&*t + FY's. Due to the self-propulsion
constraint, F&Xt = 0, and we can consider ma; = 0 because of
the viscous approximation.
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The mefhematicollmedsi
Main existence, uniqueness, and regularity result

Theorem

For every sufficiently smooth shape change t — s; , the position
functions t — r; are uniquely determined by the initial conditions
att = 0. More precisely, there exists a unique family of rigid
motions t — r; such that the state functions := r; o 8; satisfy
the equations of motion, and -, (or equivalently r;) takes a
prescribed value att = 0.

The equations of motion are derived from Newton’s second law
F; = ma;, where F; = F&*t + FY's. Due to the self-propulsion
constraint, F&Xt = 0, and we can consider ma; = 0 because of
the viscous approximation. The equations of motion then read
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Mathematics of swimming The equations of motion

Way to solve the equations
How to write the equations in terms of s; and solve them?

University
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Mathematics of swimming The equations of motion

Way to solve the equations

How to write the equations in terms of s; and solve them?
Write Stokes equations in the reference frame of the swimmer

. The new boundary velocity is
=Ry +R/w; xz2+ R/ 508,71

_ V;‘igid [yt 70Jt} + Vtshape [ét o St_l]v

w; being the axial vector of R,R] .
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Mathematics of swimming The equations of motion

Way to solve the equations

How to write the equations in terms of s; and solve them?
Write Stokes equations in the reference frame of the swimmer
. The new boundary velocity is

=Ry +R/w; xz2+ R/ 508,71

= V7€ ] + VIR Pls 05,1,
w; being the axial vector of R,R;. Then,

[F;’i“]__[Kt ¢, |[[Rf o

0 RS

Yt
Wt

+

M;ziSC Ct Jt M:hape

shape
F ]
b

Fh2Pe gnd MS"?P° being the viscous drag force and torque of a
Stokes fluid with boundary velocity $; o s; 1.
[---]is referred to as the grand resistance matrix.
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The ecnictions of mofion
The equations of motion

A simple manipulation yields

9| | R 0 H, D] || Fshare
w| | 0 R || D, L || Mehare
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The ecnictions of mofion
The equations of motion

A simple manipulation yields

9| | R 0 || H DJ || Fshawe Ribi(se,8)
Wt N 0 Rt Dt Lt thape Rt (St ) St)
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The ecnictions of mofion
The equations of motion

A simple manipulation yields
g | _ | Re O || H DI || F"™° | _ | Ribi(s:,8)
Wi 0 R; D; Ly thape Ry Q(st,8¢)
We make the dependance on the data explicit

yt _ Rt (Ht Ftshape + D;r M:hape)’
R, = R, A(D, F{™™° 4 L, M),
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The ecnictions of mofion
The equations of motion

A simple manipulation yields
g | _ | Re O || H DI || F"™° | _ | Ribi(s:,8)
Wi 0 R; D; Ly thape Ry Q(st,8¢)
We make the dependance on the data explicit

yi =R (Ht(st)thape(St )+ DtT(St) thape(st ))’
R = Ry A(Dy(s) FE™ (s, )+ Ly (sy) MEPe (s, ).
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The ecnictions of mofion
The equations of motion

A simple manipulation yields
9| | R o || H D || F" | | R,
Wt N 0 Rt Dt Lt M:hape N Rt

We make the dependance on the data explicit

(s¢,5t)
(8¢,8¢t)

Yt ZRt(Ht(St)FtShape(St J5e0s7 L) D/ () ME (4,5 os; 1),
Rt :RtA(Dt(St)thape(St 7'ét OSt_l) +Lt(3t)M§hape(St ,ét OSt_l)).
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The ecnictions of mofion
The equations of motion

A simple manipulation yields

| | R o || H D || F™ | | Ribi(ss,8)
we | | 0 Ry D; Ly thape R Ou(se,8t)
We make the dependance on the data explicit
9t = R (H(se) Ff™ (s, 8, 0 5, 1) + D/ (s1) ME™ (54,8, 0 5;,1)),
Rt = RtA(Dt(St)thape(St 7'ét o St_l) + Lt(St) thape(st ,ét o St_l)) .

Now, use classical results from ODE theory to get existence,

uniqueness, and regularity of the solutions y; and R;.

What do we need more? Regularity for the coefficients
(st,8¢) and ), (s¢, 8¢).
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Regularity

e Regularity
@ Detection of the problem
@ Solution of the problem
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Defection of the problem
Where the difficulty really is

The regularity issue encompasses an easy and a difficult part.

University
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(1) All the sub-matrices of the grand resistance matrix, and
therefore its inverse, are with respect to time.
They are functions only of the geometric shape s;.
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Defection of the problem
Where the difficulty really is

The regularity issue encompasses an easy and a difficult part.

(1) All the sub-matrices of the grand resistance matrix, and
therefore its inverse, are with respect to time.
They are functions only of the geometric shape s;.

(2) All the difficulty sits in studying how thape and thape vary
with respect to time. The hard thing to cope with is that they

depend ons; and on §; os; .
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Defection of the problem
Where the difficulty really is

The regularity issue encompasses an easy and a difficult part.

(1) All the sub-matrices of the grand resistance matrix, and
therefore its inverse, are with respect to time.
They are functions only of the geometric shape s;.

(2) All the difficulty sits in studying how thape and thape vary
with respect to time. The hard thing to cope with is that they

depend ons; and on §; os; .

Both cases are solved via a variational fechnique, which in case
(2) is not straightforward.
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Solubion of e problemn
How we solve the problem

The dependence of F5"#° and M on s, and on §; o s; *
simultaneously makes it hard fo compare the external Stokes
flows at different instants of time: there are difficulties in building
a solenoidal velocity field that fits for these two different times.
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Solubion of e problemn
How we solve the problem

The dependence of F5"#° and M on s, and on §; o s; *

simultaneously makes it hard fo compare the external Stokes
flows at different instants of time: there are difficulties in building
a solenoidal velocity field that fits for these two different times.
We drop the request of continuity and prove that thape and
M:P#® depend in @ fashion on time ¢. This is enough
to have existence and uniqueness to the equations of motion.
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Solubion of e problemn
How we solve the problem

The dependence of F5"#° and M on s, and on §; o s; *
simultaneously makes it hard fo compare the external Stokes
flows at different instants of time: there are difficulties in building
a solenoidal velocity field that fits for these two different times.
We drop the request of continuity and prove that thape and
M:P#® depend in @ fashion on time ¢. This is enough
to have existence and uniqueness to the equations of motion.

Could we ask for more regularity? Of course, we could; but
cases when §; is not even continuous are interesting in the
optimal controllability problems.
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What we have done so far. ..

@ We studied self-propelled motion in a viscous fluid.
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What we have done so far. ..

@ We studied self-propelled motion in a viscous fluid.

) mathematical framework: factorize the deformation
function by the Polar Decomposition Theorem. This allows to
separate the infinite dimensional contribution of the shape

change function s; (data) from the finite dimensional rigid
motion r; (unknowns).
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@ Equations of motion: change of position and orientation in
space achieved by change of shape, by exploiting the
viscous resistance of the fluid.

Marco Morandotti (CMU) Self-propulsion in viscous fluids Pittsburgh, 15 October 2011 16 /25



What we have done so far. ..

@ We studied self-propelled motion in a viscous fluid.

) mathematical framework: factorize the deformation
function by the Polar Decomposition Theorem. This allows to
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change function s; (data) from the finite dimensional rigid
motion r; (unknowns).

@ Equations of motion: change of position and orientation in
space achieved by change of shape, by exploiting the
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@ Solutfion of the resulting linear system of ODEs under minimal
regularity assumptions on the data.
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What we have done so far. ..

@ We studied self-propelled motion in a viscous fluid.

) mathematical framework: factorize the deformation
function by the Polar Decomposition Theorem. This allows to
separate the infinite dimensional contribution of the shape
change function s; (data) from the finite dimensional rigid
motion r; (unknowns).

@ Equations of motion: change of position and orientation in
space achieved by change of shape, by exploiting the
viscous resistance of the fluid.

@ Solutfion of the resulting linear system of ODEs under minimal
regularity assumptions on the data.

@ We proved that the motion of a micro-swimmer is
determined by the history of its shapes.
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Mono-dimensional swimmer

Q Mono-dimensional swimmer
@ Optimal swimming strategy
@ Controllability

University
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Approximate theories for 1-d swimmers

We focus now on a mono-dimensional swimmer € R?,
(s,t) € [0,L]x]0,T], performing a planar motion in a
three-dimensional infinite viscous fluid. Approximate theories
have been proposed to avoid the dimensional gap when
stating the boundary conditions.
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Approximate theories for 1-d swimmers

We focus now on a mono-dimensional swimmer € R?,
(s,t) € [0,L]x]0,T], performing a planar motion in a
three-dimensional infinite viscous fluid. Approximate theories
have been proposed to avoid the dimensional gap when
stating the boundary conditions. We adopt the so called

or , dccording to which

f(37 t) = C||X|| (37 t)X/(S, t) + CLXL('S? t)JX/(S, t)7
m(s, t) = X(Sv t) X [C||X|| (S’ t)X,(Sv t) + CJ_XJ_(S’ t)JX,(Sv t)]
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Approximate theories for 1-d swimmers

We focus now on a mono-dimensional swimmer € R?,
(s,t) € [0,L]x]0,T], performing a planar motion in a
three-dimensional infinite viscous fluid. Approximate theories
have been proposed to avoid the dimensional gap when

stating the boundary conditions. We adopt the so called
or , according to which

f(37 t) = C||X|| (37 t)X/(S, t) + CLXL('S? t)JX/(S, t)7
m(s, t) = X(Sv t) X [C||X|| (S’ t)X,(Sv t) + CJ_XJ_(S’ t)JX,(Sv t)]

The global drag force and momentum are given by

L L
F = [ K(sus.0ds M) = [0 080 ds_
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Existence of an optimal swimming strategy

It is interesting to address the problem of finding the way to

move from an initial state xo(-) at time ¢ = 0 to a final state y(-)
attimet="1T.
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Existence of an optimal swimming strategy
It is interesting to address the problem of finding the way to

move from an initial state xo(-) at time ¢ = 0 to a final state y(-)
at time ¢ = T'. Define the power expended during a stroke by

L pT L pT
P() ::/0/0 ((5.8),% (5. 2)) dsdt :/0/0 (K (5,0)(s,2), ¥ (s, 1)) dsdt.

We prove the following result
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Opfimal swimming strafegy
Existence of an optimal swimming strategy

It is interesting to address the problem of finding the way to
move from an initial state y(-) at time ¢ = 0 to a final state ()
at time ¢ = T'. Define the power expended during a stroke by

L pT L pT
P() ::/0/0 ((5.8),% (5. 2)) dsdt :/0/0 (K (5,0)(s,2), ¥ (s, 1)) dsdt.

We prove the following result

Theorem
The minimum problem

min{P(x):x € Z,x(-,0)=xo(-), x(- T)=xz(-), GP).... },

where xo and xr are assigned states, has a solution.
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Mono-dimensional swimmer Controllability

How fto conftrol the system

, Yo Yr
Haol-t) ol
é - / \ T
X0

| rotation

XT

1T rotation

translation
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Mono-dimensional swimmer Controllability

How fto conftrol the system

H-::‘(':ﬁ]‘ Hor(-11)
R

Xo XT

| rotation T rotation

translation

The maps Hy and Hyp exist by virtue of the equations of motion.

University
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Mono-dimensional swimmer Controllability

How fto conftrol the system

5
Hol-t) To =T
_ Hr(-.1-1)
———

Xo XT

| rotation T rotation

translation

The maps Hy and Hyp exist by virtue of the equations of motion.
We build a way to make a straight rod translate along its
centerline and rotate around its center.

University
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Controllability
Translation

rnegie
n
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Controllability
Rotation

__\

rnegie
n
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Thank you very much for your aftention!
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